The Largest Eigenvalue of Sparse Random Graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Largest Eigenvalue Of Sparse Random Graphs

We prove that for all values of the edge probability p(n) the largest eigenvalue of a random graph G(n, p) satisfies almost surely: λ1(G) = (1 + o(1))max{ √ ∆, np}, where ∆ is a maximal degree of G, and the o(1) term tends to zero as max{ √ ∆, np} tends to infinity.

متن کامل

Largest sparse subgraphs of random graphs

For the Erdős-Rényi random graph Gn,p, we give a precise asymptotic formula for the size α̂t(Gn,p) of a largest vertex subset inGn,p that induces a subgraph with average degree at most t, provided that p = p(n) is not too small and t = t(n) is not too large. In the case of fixed t and p, we find that this value is asymptotically almost surely concentrated on at most two explicitly given points. ...

متن کامل

The largest eigenvalue of nonregular graphs

We give an upper bound for the largest eigenvalue of a nonregular graph with n vertices and the largest vertex degree ∆.

متن کامل

A tight bound of the largest eigenvalue of sparse random graph

We analyze the largest eigenvalue and eigenvector for the adjacency matrices of sparse random graph. Let λ1 be the largest eigenvalue of an n-vertex graph, and v1 be its corresponding normalized eigenvector. For graphs of average degree d log n, where d is a large enough constant, we show λ1 = d log n + 1 ± o(1) and 〈1, v1〉 = √ n ( 1−Θ ( 1 logn )) . It shows a limitation of the existing method ...

متن کامل

Ju l 2 00 1 On the largest eigenvalue of a sparse random subgraph

We consider a sparse random subraph of the n-cube where each edge appears independently with small probability p(n) = O(n−1+o(1)). In the most interesting regime when p(n) is not exponentially small we prove that the largest eigenvalue is ∆(G)1/2(1+o(1)) = n log 2 log(p−1) × (1+o(1)) almost surely,where ∆(G) is the maximum degree of G. If p(n) is exponentially small but not proportional to 2−n/...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Combinatorics, Probability and Computing

سال: 2003

ISSN: 0963-5483,1469-2163

DOI: 10.1017/s0963548302005424